

Carbohydrate Research 259 (1994) 131-134

Note

Improved preparation of 1,6-anhydro-4-deoxy-2-*O-p*-toluenesulphonyl-β-D-xylo-hexopyranose and of its D-[4-²H]*gluco*-analogue from 1,6:3,4-dianhydro-2-*O-p*-toluenesulphonyl-β-D-galactopyranose

Tomáš Trnka a, Miloš Buděšínský b, Miloslav Černý a,*

^a Department of Organic Chemistry, Charles University, CS-128 40 Prague, Czech Republic ^b Institute of Organic Chemistry and Biochemistry, Academy of Sciences, 166 10 Prague, Czech Republic

(Received October 8th, 1993; accepted in final form January 11th, 1994)

The title compound 2, of interest for the preparation of 4-deoxyhexoses and derivatives [1-6], was previously prepared [1] by catalytic hydrogenation on Raney nickel of 1,6:3,4-dianhydro-2-O-p-toluenesulphonyl- β -D-galactopyranose 1. Although the procedure usually gives $\sim 80\%$ yields, its reproducibility in terms of yield and reaction time depends on the quality of the catalyst which must be used in a large excess. In several cases, partial detosylation was observed. An alternative method to obtain 2 involves the hydrogenolysis of 1,6-anhydro-4-deoxy-4-iodo-2-O-p-toluenesulphonyl- β -D-glucopyranose [7,8]. In our hands, the most preferable method for a large-scale preparation of 2 is that based on a reduction of the tosylepoxide 1 with diborane generated in situ from sodium borohydride and boron trifluoride etherate in 1,2-dimethoxyethane [9,10], which gives yields > 95%. In comparison with the catalytic hydrogenation, the present method is very convenient for the preparation of deuteriated 3 using sodium borodeuteride.

The structure of 3 was confirmed by measurement of the 1H and ^{13}C NMR spectra of 2 and 3 (see Table 1). Axial disposition of oxygenated substituents at C-2 and C-3, and the $^1C_4(D)$ conformation of the pyranose ring followed from the small vicinal interproton coupling constants $J_{2,3}$, $J_{3,4}$, and the observation of characteristic long-range couplings $J_{1,3}$, $J_{2,4}$, and $J_{3,5}$. The presence of the hydroxyl group at C-3 was confirmed by in situ acylation by trichloroacetyl isocyanate (TAI) [11]. 1H NMR spectra of trichloroacetyl carbamate (TAC)-derivatives of 2 and 3 showed a signal for one NH proton at δ 8.52, a characteristic downfield shift of H-3 (1.03)

^{*} Corresponding author.

Table 1 Comparative ¹H and ¹³C NMR data for 2 and 3

¹ H	Chemical shifts (ppm)				н,н	Coupling constants (Hz)		
	2		3	+ TAI a		2		3
H-1		5.28		[0.10]	1,2		2,0	
H-2		4.23		[0.14]	1,3		1.5	
H-3		3.94		[1.03]	2,3		1.5	
Η-4α	2.32			[0.14]	$2,4\beta$		1.5	
H-4β		1.71		[0.13]	$3,4\alpha$	5.8		
H-5		4.54		[0.03]	$3,4\beta$		3.0	
H-6en		4.14		[0.08]	3,OH		6.0	
H-6ex		3.68		[0.07]	3,5		1.5	
OH		2.68			$4\alpha,4\beta$	15.1		
OTs:					$4\alpha,5$	4.4		
H-2',6'		7.82		[0.01]	4α , 6ex	1.5		
H-3',5'		7.37		[0.00]	$4\beta,5$		1.9	
CH ₃		2.46		[0.00]	5,6en		0.8	
				. ,	5,6ex		5.0	
					6en,6ex		7.1	
¹³ C	Chemical shifts (ppm)				С,Н	Coupling constants (Hz)		
	2		3			2		3
C-1		99.24			C-1,H-1		176	
C-2		76.76			C-2,H-2		151	
C-3	66.42		66.36		C-3,H-3		151	
C-4	32.50		32.18		$C-4,H-4\alpha$	128		ь
C-5	71.41		71.34		C-4,H-4β		128	
C-6		67.65			C-5,H-5		156	
					C-6,H-6en		151	
OTs:					C-6,H-6ex		151	
C-1'		133.13			C-2',H-2'		165	
C-2',6'		127.85			C-6',H-6'		165	
C-3',5'		130.06			C-3',H-3'		162	
C-4'		145.36			C-5',H-5'		162	
CH ₃		21.66			CH_3		126	

^a Trichloroacetyl isocyanate (TAI) - induced acylation shifts for 2 are given in square brackets.

ppm) and smaller induced shifts of protons in neighbouring positions. The presence of deuterium at C-4 in 3 was evidenced in the proton decoupled 13 C NMR spectrum by the characteristic splitting of the C-4 signal by deuterium (triplet with one-bond coupling $J_{\rm C,D}$ 20 Hz) and the isotopic upfield shifts of carbon signals in the α - and β -positions [12] (0.32, 0.06, and 0.07 ppm for C-4, C-3, and C-5, respectively). The axial orientation of deuterium at C-4 followed from the comparison of the 1 H NMR spectra of 2 and 3, where the latter one showed the absence of signal H-4ax as well as corresponding coupling constants. Proton-coupled, 13 C NMR spectra of 3 differed from 2 in the shape of the C-4 signal [basic splitting to doublet of triplets due to one-bond coupling $J_{\rm C-4,H-4}$ 128 and $J_{\rm C-4,^2H-4}$ 20 Hz] and in the simplification of the fine splitting of signals C-2, C-3, C-5, and C-6 by

 $^{^{}b}J_{\text{C-4.}}{}^{2}\text{H-4}\alpha$.

the absence of two- and/or three-bond couplings with H-4 β . The observed values of $J_{\rm C,H}$ reflect the known effects of the hybridization and substitution of individual carbon atoms. The rate of deuterium incorporation in 3 was estimated as $\sim 92\%$ from comparison of the relative intensities of signals for C-4 in ¹³C NMR spectra and H-4 in ¹H NMR spectroscopy for 2 and 3, as well as of ions at m/z 145/146 in EIMS.

1. Experimental

General.—Melting points were determined on a Boëtius micro melting-point apparatus and are uncorrected. Optical rotations were measured in CHCl₃ at 20°C with a Bendix–Ericsson ETL 143 A polarimeter. TLC was performed on Silica Gel sheets (Alufolien E. Merck, Art. 5554) in 10:1 benzene–acetone and detection by charring with 10% $\rm H_2SO_4$. NMR spectra were recorded with a Varian Unity 500 spectrometer ($^1\rm H$ at 500 MHz and $^{13}\rm C$ at 125.7 MHz frequency) in CDCl₃; internal references (Me)₄Si and CDCl₃, for $^1\rm H$ and $^{13}\rm C$, respectively. Mass spectra (EI) were measured with a Jeol MS D 100 spectrometer (70 eV, direct inlet t 100–120°C). NaB $^2\rm H_4$ (98.1%) was purchased from the Institute of Nuclear Research, Řež, Czech Republic.

1,6-Anhydro-4-deoxy-2-O-p-toluenesulphonyl-β-D-xylo-hexopyranose (2).—To a suspension of finely ground tosylepoxide 1 (110 g, 0.37 mol) and NaBH₄ (55 g, 1.45 mol) in 1.1 L of 1,2-dimethoxyethane was added dropwise (under a hood) BF₃ etherate (110 mL) during 1 h. The mixture was stirred and cooled with water; the temperature should not exceed 30°C. After addition of BF₃ etherate, the solution was left standing overnight for ~ 20 h at room temperature. TLC revealed a spot identified as 2 (R_f 0.2) and traces of 1 (R_f 0.5). Then the mixture was adjusted to pH 7 with 5% HCl, concentrated under diminished pressure (water pump) at < 40°C, and poured into 3 L of ice-water. Several extractions with CHCl₃ (total volume 2 L), drying of the organic phase with anhyd CaCl₂, and evaporation gave syrupy 2 which crystallized on addition of a small amount of ether yielding practically pure 2 (106.6 g, 96%); mp 89-91°C, [α]_D -40° (c 1.0, CHCl₃). Recrystallization from EtOH-H₂O or CHCl₃-Et₂O-petroleum ether gave 2; mp

92–93°C, $[\alpha_{\rm D}]$ – 40° (*c* 1.2, CHCl₃); Lit. [1], mp 93–95°C, $[\alpha]_{\rm D}$ – 42° (*c* 1.7, CHCl₃); Lit. [8], mp 92–94°C, $[\alpha]_{\rm D}$ – 40° (*c* 2.0, CHCl₃); EIMS: m/z 300 (0.5, M ⁺?), 172 (11.5), 155 (17.5, $[{\rm C_7H_7O_2S}]^+$), 145 (19.7, $[{\rm C_6H_9O_4}]^+$, 99 (100, $[{\rm C_5H_7O_2}]^+$), 91 (71), 71 (36), 70 (6.5), 69 (70.6). ¹H and ¹³C NMR (CDCl₃) in Table 1.

1,6-Anhydro-4-deoxy-2-O-p-toluenesulphonyl-β-D-[4- 2 H]glucopyranose (3).—A similar procedure as described above was used for the preparation of 1.0 g of 3. 1,2-Dimethoxyethane was dried with NaH and distilled before use. Air humidity was excluded. Yield 95%, mp 89–91°C, [α]_D – 38° (c 1.0, CHCl₃); 1 H and 13 C NMR (CDCl₃) in Table 1. EIMS: m/z 172 (9.5), 155 (17, [C₇H₇O₂S]⁺), 146 (18.5, [C₆H₈ 2 HO₄]⁺), 99 (100, [C₅H₇O₂]⁺), 91 (75), 72 (30), 71 (16), 70 (51), 69 (29).

Acknowledgments

We thank Dr V. Hanuš and Dr M. Polášek, from the J. Heyrovský Institute of Physical Chemistry in Prague for measurement and interpretation of mass spectra.

References

- [1] M. Çerný and J. Pacák, Collect. Czech. Chem. Commun., 27 (1962) 94-105.
- [2] M. Černý, J. Staněk, Jr., and J. Pacák, Collect. Czech. Chem. Commun., 34 (1969) 1750-1765.
- [3] J. Pecka, J. Staněk, Jr., and M. Černý, Collect. Czech. Chem. Commun., 39 (1974) 1192-1209.
- [4] J. Pecka and M. Černý, Collect. Czech. Chem. Commun., 38 (1973) 132-142.
- [5] T. Ogawa, M. Akatsu, and M. Matsui, Carbohydr. Res., 44, (1975) c22-c24.
- [6] T. Ogawa, N. Takasaka, and M. Matsui, Carbohydr. Res., 60 (1978) c4-c6.
- [7] I. Černý, T. Trnka, and M. Černý, Collect. Czech. Chem. Commun., 48 (1983) 2386-2394; cf. H. Kleimannová, M.S. Thesis, Charles University, Prague, 1969.
- [8] N.M. Merlis, E.A. Andrievskaya, L.J. Kostelian, and O.P. Golova, *Izv. Akad. Nauk SSSR*, Ser. Khim., (1975), 139-142.
- [9] E. Šrámková, M.S. Thesis, Charles University, Prague, 1985.
- [10] Yung-Lung Fu and M. Bobek, J. Org. Chem., 45 (1980) 3836-3840.
- [11] Z. Samek and M. Buděšínský, Collect. Czech. Chem. Commun., 44 (1979) 558-588.
- [12] P.A.J. Gorin, Can. J. Chem. 52 (1974) 458-461.